A Note on Real vs Complex Best Chebyshev Approximation on an Interval

A. L. Levin
Department of Mathematics, Everyman's University, Ramat-Aviv, Tel-Aviv, Israel, and
National Research Institute for Mathematical Sciences, CSIR, P.O. Box 395, Pretoria 0001, Republic of South Africa
Communicated by E. W. Cheney

Received August 21, 1984

Let $E_{n n}^{\mathrm{R}}(f)\left(E_{m}^{\mathrm{C}}(f)\right)$ be the error in the best Chebyshev approximation of a rcal continuous function f on $[-1,1]$ by real (complex) rational functions of type (n, n). We show that the ratio $E_{n n}^{\mathrm{C}}(f) / E_{n n}^{\mathrm{R}}(f)$ may be arbitrarily close to $\frac{1}{2}$ and that for the class of even functions and $n=1$ this bound is sharp. We also prove that $\inf \left\{E_{11}^{C}(f) / E_{11}^{\mathrm{R}}(f): E_{11}^{\mathrm{R}}(f)>0\right\}$ is positive. O 1986 Academic Press, Inc.

For any pair (m, n) of non-negative integers let $\pi_{m n}^{\mathrm{R}}$ and $\pi_{m n}^{\mathrm{C}}$ denote the sets of rational functions of type (m, n) with real and complex coefficients, respectively. For any continuous real function f on $[-1,1]$ we set

$$
E_{m n}^{\mathrm{R}}(f)=\inf _{r \in \pi_{m n}^{\mathrm{R}}}\|f-r\|, \quad E_{m n}^{\mathrm{C}}(f)=\inf _{r \in \pi_{m n}^{\mathrm{C}}}\|f-r\|,
$$

where $\|\phi\|$ denotes the supremum norm of ϕ on $[-1,1]$.
Many authors investigated the phenomenon $E_{m n}^{\mathrm{C}}(f)<E_{m n}^{\mathrm{R}}(f)$, which can occur for a real function f (see Varga [5, Chap. 5] and Trefethen and Gutknceht [4] for the history of this question and for further references). In particular, many efforts have been made to determine the value of

$$
\begin{equation*}
\gamma_{m n}=\inf \left\{E_{m n}^{\mathrm{C}}(f) / E_{m n}^{\mathrm{R}}(f): f \in C[-1,1] \backslash \pi_{m n}^{\mathrm{R}}\right\} . \tag{1}
\end{equation*}
$$

In 1982 Ellacott [2] proved that if p is a polynomial of degree $m+1$, then $E_{m n}^{\mathrm{C}}(p) / E_{m n}^{\mathrm{R}}(p) \geqslant \frac{1}{2}$, provided $m \geqslant n$. This result suggested the question whether $\frac{1}{2}$ is actually a lower bound for $\gamma_{m n}(m \geqslant n)$, and, if so, whether it is sharp.

Recently Trefethen and Gutknecht [4] proved that $\gamma_{m n}=0$, provided $m i \leqslant n-3$. They also showed that Ellacott's result holds for $n \leqslant 2 m+1$; and so, it holds even when $\gamma_{m n}=0$.

In this note we present some partial results, which suggest that $\frac{1}{2}$ might be the right bound at least for the case $m=n$, with the infimum in (1) being restricted to somewhat smaller (but still wide) class of functions.

We start with the following example.

Example. Consider the function

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(\frac{x-x i}{x+x i}\right)^{n}+\frac{1}{2}\left(\frac{x+x i}{x-x i}\right)^{n} \quad \alpha>0 . \tag{2}
\end{equation*}
$$

Clearly, f is continuous and real on $[-1,1]$. By choosing

$$
r^{*}(x)=\frac{1}{2}\left(\frac{x-\alpha i}{x+\alpha i}\right)^{n} \in \pi_{n n}^{\mathrm{c}},
$$

we obtain $\left\|f-r^{*}\right\|=\frac{1}{2}$. It follows that

$$
\begin{equation*}
E_{n n}^{C}(f) \leqslant \frac{1}{2} . \tag{3}
\end{equation*}
$$

We now turn to estimating $E_{n n}^{\mathrm{R}}(f)$ from below. The function $x \rightarrow(x-x i) /(x+\alpha i)$ maps $(-\infty, \infty)$ bijectively onto $\{z:|z|=1\} \backslash\{1\}$. Therefore, as x increases from $-\infty$ to $+\infty,((x-\alpha i) /(x+\alpha i))^{n}$ traverses the circle $|z|=1 n$ times, omitting the point 1 once. Hence there exist $2 n-1$ points $x_{1}<x_{2}<\cdots<x_{2 n-1}$ such that

$$
\begin{equation*}
\left(\frac{x_{k}-\alpha i}{x_{k}+\alpha i}\right)^{n}=(-1)^{k}, \quad k=1, \ldots, 2 n-1 \tag{4}
\end{equation*}
$$

Straightforward calculation gives the values of x_{k} :

$$
x_{k}=-\alpha \cot \frac{\pi k}{2 n}, \quad k=1, \ldots, 2 n-1
$$

If $\alpha>0$ is small enough, then $x_{k}-s$ lie in the interval $(-1,1)$, and we obtain, from (4) and (2):

$$
f\left(x_{k}\right)=(-1)^{k}, \quad k=1, \ldots, 2 n-1 .
$$

At the points $\pm 1, f$ attains the same value, which for α small is close to 1 :

$$
f(-1)=f(1)=1-O(x) .
$$

We have thus found $2 n+1$ consecutive points of $[-1,1]$:

$$
-1=x_{0}<x_{1}<\cdots<x_{2 n-1}<x_{2 n}=1
$$

such that $f\left(x_{k}\right) f\left(x_{k+1}\right)<0, k=0,1, \ldots, 2 n-1$.
Applying de la Vallée Poussin theorem [3], we deduce that $E_{2 n-1,2 n-1}^{\mathrm{R}}(f) \geqslant \min \left\{\left|f\left(x_{k}\right)\right|: k=0, \ldots, 2 n\right\} \geqslant 1-O(\alpha)$, which of course implies

$$
\begin{equation*}
E_{n n}^{\mathrm{R}}(f) \geqslant 1-O(\alpha) \tag{5}
\end{equation*}
$$

The estimations (3), (5) yield for $\alpha>0$ small enough:

$$
\begin{equation*}
\frac{E_{n n}^{\mathrm{C}}(f)}{E_{n n}^{\mathrm{R}}(f)} \leqslant \frac{1}{2}+O(\alpha) \tag{6}
\end{equation*}
$$

It follows that for any $n \geqslant 1$ there exists a function f for which the ratio (6) is arbitrarily close to $\frac{1}{2}$, and we obtain

Theorem 1. For any $n \geqslant 1, \gamma_{n n} \leqslant \frac{1}{2}$.
For the case $n=1$ Bennett et al. [1] proved that if f is even and satisfies $0=f(0) \leqslant f(x) \leqslant f(1)=1$ on $[0,1]$ then

$$
\begin{equation*}
\frac{1}{4}<E_{11}^{\mathrm{C}}(f) \leqslant E_{11}^{\mathrm{R}}(f) \leqslant \frac{1}{2} \tag{7}
\end{equation*}
$$

which implies that for any such function

$$
\begin{equation*}
\frac{E_{11}^{\mathrm{C}}(f)}{E_{11}^{\mathrm{R}}(f)}>\frac{1}{2} \tag{8}
\end{equation*}
$$

The argument they used to prove (7) can actually be applied to any continuous real function f that satisfies
(i) $-M \leqslant f(x) \leqslant M(M>0)$ on $[-1,1]$;
(ii) there exist three points $-1 \leqslant x_{1}<x_{2}<x_{3} \leqslant 1$ such that $f\left(x_{k}\right)=\lambda(-1)^{k} M$ for $k=1,2,3$ (with $\lambda=1$ or $\lambda=-1$).

Consequently, for any such function it holds that

$$
\frac{1}{2} M<E_{11}^{\mathrm{C}}(f) \leqslant E_{11}^{\mathrm{R}}(f) \leqslant M
$$

which yields (8).
With this observation in mind it is easy to establish the following result:

Proposition. Let $f \in C[-1,1] \backslash \pi_{11}^{\mathrm{R}}$ and let e_{10}^{*} be the best approximant to ffrom π_{10}^{R}. Then,

$$
\frac{E_{11}^{\mathrm{C}}\left(f-e_{10}^{*}\right)}{E_{11}^{\mathrm{R}}\left(f-e_{10}^{*}\right)}>\frac{1}{2}
$$

Proof. Note that the function $f-e_{10}^{*}$ satisfies the conditions (i), (ii) above (cf. [3, p. 161]) with $M=\left\|f-e_{10}^{*}\right\|$.

If the polynomial e_{10}^{*} is constant, that is, if $E_{10}^{\mathrm{R}}(f)=E_{00}^{\mathrm{R}}(f)$ (this holds in particular for any even function $)$, then $E_{11}\left(f-e_{10}^{*}\right)=E_{11}(f)$, and, again, we obtain (8). If we note that the function f of the Example above was even, we deduce:

Theorem 2.

$$
\inf \left\{E_{11}^{\mathrm{C}}(f) / E_{11}^{\mathrm{R}}(f): f \in C[-1,1] \backslash \pi_{11}^{\mathrm{R}} \text { s.t. } E_{10}^{\mathrm{R}}(f)=E_{00}^{\mathrm{R}}(f)\right\}=\frac{1}{2} .
$$

Although it is not clear whether $\gamma_{11}=\frac{1}{2}$ or not, one thing can be asserted.

Theorem 3. $\gamma_{11}>0$.

Proof. Trefethen and Gutknecht [4] proved that $\gamma_{01}>0$. As it stands, Theorem 3 follows from their result. Indeed, assume that $\gamma_{11}=0$. Then given $\varepsilon>0$ one can find $f \in C[-1,1]$ and $c \in \pi_{11}^{C}$ such that

$$
\begin{equation*}
\|f-c\|<\hat{c} \quad \text { and } \quad E_{11}^{\mathrm{R}}(f)=1 \tag{9}
\end{equation*}
$$

From (9) follows that $\|\operatorname{Im} c\|<\varepsilon$. Hence there exists $\delta>0$ such that $|\operatorname{Imc}(1+\delta)|<\varepsilon$. We observe now that the transformation $\phi: t \rightarrow((1+\delta) t+1) /(t+(1+\delta))$ maps $[-1,1]$ bijectively onto itsell and that the change of the argument x by $\phi(t)$ preserves the classes $C[-1,1]$, π_{11}^{R} and π_{11}^{C} and preserves norms. Hence, the functions $\bar{f}=f_{0} \phi$ and $\tilde{c}=c \leadsto \phi$ satisfy

$$
\|\tilde{f}-\tilde{c}\|<\varepsilon \quad \text { and } \quad E_{1:}^{\mathrm{R}}(\tilde{f})=1
$$

In view of the choice of δ, we also obtain

$$
\begin{equation*}
|\operatorname{Im} \tilde{c}(\infty)|=|\operatorname{Im} c(\phi(\infty))|=|\operatorname{Im} c(1+\delta)|<\varepsilon \tag{10}
\end{equation*}
$$

Define now $g(t)=\widetilde{f}(t)-\operatorname{Re} \tilde{c}(\infty)$. Then

$$
\begin{equation*}
E_{01}^{\mathrm{R}}(g) \geqslant E_{11}^{\mathrm{R}}(g)=E_{11}^{\mathrm{R}}(\tilde{f})=1 \tag{11}
\end{equation*}
$$

by $\left(9^{\prime}\right)$, and

$$
\begin{equation*}
\|g-(\tilde{c}-\tilde{c}(\infty))\|=\|\tilde{f}-\tilde{c}+i \operatorname{Im} \tilde{c}(\infty)\|<2 \varepsilon \tag{12}
\end{equation*}
$$

by $\left(9^{\prime}\right),(10)$.
Since $\tilde{c}-\tilde{c}(\infty) \in \pi_{01}^{\mathrm{C}}$, we obtain from (12) that $E_{01}^{\mathrm{C}}(g)<2 \varepsilon$, which together with (11) implies $\gamma_{01}<2 \varepsilon$. It follows that $\gamma_{01}=0$, contradicting the above-mentioned result of Trefethen and Gutknecht.

References

1. C. Bennett, K. Rudnick, and J. Vaaler, Best uniform approximation by linear practional transformations, J. Approx. Theory 25 (1979), 204-224.
2. S. W. Ellacott, A note on a problem of Saff and Varga concerning the degree of complex rational approximation to real valued functions, Bull. Amer. Math. Soc. (N. S.) 6 (1982), 218-220.
3. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," SpringerVerlag, Berlin/New York, 1967.
4. L. N. Trefethen and M. H. Gutinnecht, Real vs. complex rational Chebyshev approximation to real valued functions, Trans. Amer. Math. Soc. 280 (1983), 555-561.
5. R. S. Varga, "Topics in Polynomial and Rational Interpolation and Approximation, "Les Presses de l'Université de Montréal, Montreal, 1982.
