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Let ER (/) (ES(f)) be the error in the best Chebyshev approximation of a recal
continuous function fon [—1,1] by real (complex) rational functions of type
(n, n). We show that the ratio ES,(f)/ER(f) may be arbitrarily close to } and that
for the class of cven functions and n=1 this bound is sharp. Wec also provc that

inf {EC(SFVER(S): ER(f) >0} is positive. © 1986 Academic Press, Inc.

For any pair (m, n) of non-negative integers let n&, and =€, denote the
sets of rational functions of type (m, ) with real and complex coefficients,
respectively. For any continuous real function fon [—1, 1] we set

EL.(f)=inf yf—r),  ES.(f)= inf | f—p,

re nnm

where |¢| denotes the supremum norm of ¢ on [ —1, 1.

Many authors investigated the phenomenon ES (f) < ER (f), which can
occur for a real functionf (see Varga [5, Chap. 5] and Trefethen and
Gutknecht [4] for the history of this question and for further references).
In particular, many efforts have been made to determine the value of

Pon=10f {EL (F)ER(f):fe CL—1, 1\n], }. (1)

In 1982 Ellacott [2] proved that if p is a polynomial of degree m + 1, then
EC (p)/ER.(p)=31, provided m>=n. This result suggested the question

nn

whether 4 is actually a lower bound for y,,, (7 > r), and, if so, whether it is
sharp.
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Recently Trefethen and Gutknecht [4] proved that y,,=0, provided
mi <n—3. They also showed that Ellacott’s result holds for n < 2m + 1; and
so, it hoids even when y,,=0.

In this note we present some partial results, which suggest that 1 might
be the right bound at least for the case m1 = n, with the infimum in (1) being
restricted to somewhat smaller (but still wide) class of functions.

We start with the following example.

ExampLE. Consider the function

1 (.\:woci)" 1 x—HCi)”
X)=- - > 0. 2
Jtx) 2\x+4ai +7(x—oci x (

N / - /

——

Clearly, fis continuous and real on [ —1, 17]. By choosing

1/ x—ai\"
r¥x) =5 ) ent
2\Xx+ o,

we obtain || f—r*| =1. It follows that

We now turn to estimating E®(f) from below. The function

x — (x—2i)/(x+oi) maps {—o0, o) bijectively onto {z:|zl=1}{1}.
Therefore, as x increases from — oo to +oc, ({x —«i)/{x+u«i))" traverses
the circle |z] = 1 # times, omitting the point 1 once. Hence there exist 2u# — 1
points x, < x,< ' <X,,_, such that
(ﬁk_“v (1), k=l..21—1. (4)
X+ ol

Straightforward calculation gives the values of x,:

nk
X, = —uocot—, k=1,.2n—1
2n

Z

If >0 is small enough, then x, —s lie in the interval (—1, 1), and we
obtain, from (4) and (2):

flx)=(=1), k=1,.2n—1.
At the points + 1, f attains the same value, which for « small is close 1o i:

f(=1)=f(1)=1-0(2).
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We have thus found 2n#+ 1 consecutive points of [ -1, 1]:
_] =X0<X1< ot <x2n;1<x2n=1
such that f(x;)f(x;.,)<0, k=0, 1,..,2n— L.
Applying de la Vallée Poussin theorem [3], we deduce that

EY n_ i (f)zmin{|f(x,)|:k£=0,..,2n} >1~0(a), which of course
implies

En(f}=1-0(a). (5)

The estimations (3), (5) yield for « >0 small enough:

E)
EL(f)

1
<5+ 0(@). (6)

It follows that for any n > 1 there exists a function f for which the ratio (6)
is arbitrarily close to 3, and we obtain

. 1
THEOREM 1. Foranynz=1,y,,<3.

For the case n =1 Bennett et al. [1] proved that if f'is even and satisfies
0=7(0)<f(x)<f(1)=1 on [0, 1] then

I<EL(f)SER(f)I<S, (7)

which implies that for any such function

ES(f)_ 1
()7 ®)

The argument they used to prove (7) can actually be applied to any con-
tinuous real function f that satisfies

i) —M<f(x)SMM>0)on[-1,1];

(ii) there exist three points —1<x,<x,<x3<! such that
fx)=M—-1)*M for k=1,2,3 (with A=10r 1= —1).

Consequently, for any such function it holds that
M < EG(f)<SENN)S M, (7)

which yields (8).
With this observation in mind it is easy to establish the following result:
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PrROPOSITION.  Let fe C[ —1, L \n¥, and let e¥, be the best approximant
to f from n%,. Then,

Elcl(f_ ) l
Eﬁ(f— ef) 2

Proof. Note that the function f— e satisfies the conditions (i), {ii)
above (cf. [3,p. 161]) with M= | f—efl- R

If the polynomial e, is constant, that is, if EX(f)=EZ,(f) (this holds in
particular for any even function), then E, (f—e¥,)= E,,(f), and, again, we
obtain (8). If we note that the function f of the Example above was even,
we deduce:

THEOREM 2.
inf {Elcl(f)/fE?l(f):‘fe C[-1. 1]\‘,7511{1 s.t. Ei{o(’f) :Ego(f)} = %

Although it is not clear whether y,, =1 or not, one thing can be asserted.

THEOREM 3. 7, >0.

Proof. Trefethen and Gutknecht [47] proved that y,, >0. As it stands,
Theorem 3 follows from their result. Indeed, assume that y;,=0. Then
given ¢> 0 one can find fe C[ 1, 1] and cen$; such that

| f—ecl <e and EX(f)=1 {9
From (9) follows that |Imc| <¢ Hence there exists 6>0 such that
Ime(l +d)j<e. We observe now that the transformation
$rt—((1+0)+ 1)/(t+(143)) maps [ -1, L] bijectively onto itself and
that the change of the argument x by ¢(7) preserves the classes C[ —1. 17,

nR and 7§, and preserves norms. Hence, the functions f=/o¢ and é=c-¢
satisfy

If—¢l<e and  EX(f)=1 (8"
In view of the choice of d, we also obtain
[Im ¢(o0)| = |Im c(¢(o0))| = |Im (1 +J)| <e. (103

Define now g(¢) =f(1) — Re &(oc). Then

EX(g)= ER(g)=E} (/) =1 (1)
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by (9'), and

| g —(@—&(c0))| = f—Z+ilm&(oo)| <2e (12)

by (9'), (10).

Since ¢—¢&(oo)en§,, we obtain from (12) that ES(g)<2e, which

together with (11) implies y,, < 2. It follows that y,, =0, contradicting the
above-mentioned result of Trefethen and Gutknecht. ||
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