A Note on Real vs Complex Best Chebyshev Approximation on an Interval

A. L. LEVIN

Department of Mathematics, Everyman's University, Ramat-Aviv, Tel-Aviv, Israel, and National Research Institute for Mathematical Sciences, CSIR, P.O. Box 395, Pretoria 0001, Republic of South Africa

Communicated by E. W. Cheney

Received August 21, 1984

Let $E_{nn}^{R}(f)$ ($E_{nn}^{C}(f)$) be the error in the best Chebyshev approximation of a real continuous function f on [-1, 1] by real (complex) rational functions of type (n, n). We show that the ratio $E_{nn}^{C}(f)/E_{nn}^{R}(f)$ may be arbitrarily close to $\frac{1}{2}$ and that for the class of even functions and n = 1 this bound is sharp. We also prove that inf $\{E_{11}^{C}(f)/E_{11}^{R}(f): E_{11}^{R}(f) > 0\}$ is positive. \bigcirc 1986 Academic Press, Inc.

For any pair (m, n) of non-negative integers let π_{mn}^{R} and π_{mn}^{C} denote the sets of rational functions of type (m, n) with real and complex coefficients, respectively. For any continuous real function f on [-1, 1] we set

$$E_{mn}^{\mathsf{R}}(f) = \inf_{r \in \pi_{mn}^{\mathsf{R}}} \|f - r\|, \qquad E_{mn}^{\mathsf{C}}(f) = \inf_{r \in \pi_{mn}^{\mathsf{C}}} \|f - r\|,$$

where $\|\phi\|$ denotes the supremum norm of ϕ on [-1, 1].

Many authors investigated the phenomenon $E_{mn}^{C}(f) < E_{mn}^{R}(f)$, which can occur for a real function f (see Varga [5, Chap. 5] and Trefethen and Gutknecht [4] for the history of this question and for further references). In particular, many efforts have been made to determine the value of

$$\gamma_{mn} = \inf \{ E_{mn}^{\rm C}(f) / E_{mn}^{\rm R}(f) : f \in C[-1, 1] \setminus \pi_{mn}^{\rm R} \}.$$
(1)

In 1982 Ellacott [2] proved that if p is a polynomial of degree m + 1, then $E_{mn}^{C}(p)/E_{mn}^{R}(p) \ge \frac{1}{2}$, provided $m \ge n$. This result suggested the question whether $\frac{1}{2}$ is actually a lower bound for γ_{mn} $(m \ge n)$, and, if so, whether it is sharp.

0021-9045/86 \$3.00 Copyright © 1986 by Academic Press, Inc. All rights of reproduction in any form reserved. Recently Trefethen and Gutknecht [4] proved that $\gamma_{mn} = 0$, provided $m \le n-3$. They also showed that Ellacott's result holds for $n \le 2m+1$; and so, it holds even when $\gamma_{mn} = 0$.

In this note we present some partial results, which suggest that $\frac{1}{2}$ might be the right bound at least for the case m = n, with the infimum in (1) being restricted to somewhat smaller (but still wide) class of functions.

We start with the following example.

EXAMPLE. Consider the function

$$f(x) = \frac{1}{2} \left(\frac{x - \alpha i}{x + \alpha i} \right)^n + \frac{1}{2} \left(\frac{x + \alpha i}{x - \alpha i} \right)^n \qquad \alpha > 0.$$
(2)

Clearly, f is continuous and real on [-1, 1]. By choosing

$$r^*(x) = \frac{1}{2} \left(\frac{x - \alpha i}{x + \alpha i} \right)^n \in \pi_{nn}^{\mathsf{C}},$$

we obtain $||f - r^*|| = \frac{1}{2}$. It follows that

$$E_{nn}^{\mathbf{C}}(f) \leqslant \frac{1}{2}.\tag{3}$$

We now turn to estimating $E_{an}^{\mathbb{R}}(f)$ from below. The function $x \to (x - \alpha i)/(x + \alpha i)$ maps $(-\infty, \infty)$ bijectively onto $\{z; |z| = 1\} \setminus \{1\}$. Therefore, as x increases from $-\infty$ to $+\infty$, $((x - \alpha i)/(x + \alpha i))^n$ traverses the circle |z| = 1 n times, omitting the point 1 once. Hence there exist 2n - 1 points $x_1 < x_2 < \cdots < x_{2n-1}$ such that

$$\left(\frac{x_k - \alpha i}{x_k + \alpha i}\right)^n = (-1)^k, \qquad k = 1, ..., 2n - 1.$$
(4)

Straightforward calculation gives the values of x_k :

$$x_k = -\alpha \cot \frac{\pi k}{2n}, \qquad k = 1, ..., 2n - 1.$$

If $\alpha > 0$ is small enough, then $x_k - s$ lie in the interval (-1, 1), and we obtain, from (4) and (2):

$$f(x_k) = (-1)^k, \qquad k = 1, ..., 2n-1.$$

At the points ± 1 , f attains the same value, which for α small is close to 1:

$$f(-1) = f(1) = 1 - O(\alpha).$$

A. L. LEVIN

We have thus found 2n+1 consecutive points of [-1, 1]:

$$-1 = x_0 < x_1 < \cdots < x_{2n-1} < x_{2n} = 1$$

such that $f(x_k) f(x_{k+1}) < 0, k = 0, 1, ..., 2n - 1$.

Applying de la Vallée Poussin theorem [3], we deduce that $E_{2n-1,2n-1}^{\mathbb{R}}(f) \ge \min\{|f(x_k)|: k=0,...,2n\} \ge 1 - O(\alpha)$, which of course implies

$$E_{nn}^{\mathsf{R}}(f) \ge 1 - O(\alpha). \tag{5}$$

The estimations (3), (5) yield for $\alpha > 0$ small enough:

$$\frac{E_{nn}^{\mathsf{C}}(f)}{E_{nn}^{\mathsf{R}}(f)} \leqslant \frac{1}{2} + O(\alpha).$$
(6)

It follows that for any $n \ge 1$ there exists a function f for which the ratio (6) is arbitrarily close to $\frac{1}{2}$, and we obtain

THEOREM 1. For any $n \ge 1$, $\gamma_{nn} \le \frac{1}{2}$.

For the case n = 1 Bennett *et al.* [1] proved that if f is even and satisfies $0 = f(0) \le f(x) \le f(1) = 1$ on [0, 1] then

$$\frac{1}{4} < E_{11}^{\rm C}(f) \leq E_{11}^{\rm R}(f) \leq \frac{1}{2},\tag{7}$$

which implies that for any such function

$$\frac{E_{11}^{\rm C}(f)}{E_{11}^{\rm R}(f)} > \frac{1}{2}.$$
(8)

The argument they used to prove (7) can actually be applied to any continuous real function f that satisfies

(i) $-M \leq f(x) \leq M(M > 0)$ on [-1, 1];

(ii) there exist three points $-1 \le x_1 < x_2 < x_3 \le 1$ such that $f(x_k) = \lambda(-1)^k M$ for k = 1, 2, 3 (with $\lambda = 1$ or $\lambda = -1$).

Consequently, for any such function it holds that

$$\frac{1}{2}M < E_{11}^{\rm C}(f) \leqslant E_{11}^{\rm R}(f) \leqslant M, \tag{7'}$$

which yields (8).

With this observation in mind it is easy to establish the following result:

216

PROPOSITION. Let $f \in C[-1, 1] \setminus \pi_{11}^{R}$ and let e_{10}^{*} be the best approximant to f from π_{10}^{R} . Then,

$$\frac{E_{11}^{\rm C}(f-e_{10}^*)}{E_{11}^{\rm R}(f-e_{10}^*)} > \frac{1}{2}.$$

Proof. Note that the function $f - e_{10}^*$ satisfies the conditions (i), (ii) above (cf. [3, p. 161]) with $M = ||f - e_{10}^*||$.

If the polynomial e_{10}^* is constant, that is, if $E_{10}^{R}(f) = E_{00}^{R}(f)$ (this holds in particular for any even function), then $E_{11}(f - e_{10}^*) = E_{11}(f)$, and, again, we obtain (8). If we note that the function f of the Example above was even, we deduce:

THEOREM 2.

$$\inf \left\{ E_{11}^{\mathsf{C}}(f) / E_{11}^{\mathsf{R}}(f) : f \in C[-1, 1] \setminus \pi_{11}^{\mathsf{R}} \text{ s.t. } E_{10}^{\mathsf{R}}(f) = E_{00}^{\mathsf{R}}(f) \right\} = \frac{1}{2}$$

Although it is not clear whether $\gamma_{11} = \frac{1}{2}$ or not, one thing can be asserted.

THEOREM 3. $\gamma_{11} > 0$.

Proof. Trefethen and Gutknecht [4] proved that $\gamma_{01} > 0$. As it stands, Theorem 3 follows from their result. Indeed, assume that $\gamma_{11} = 0$. Then given $\varepsilon > 0$ one can find $f \in C[-1, 1]$ and $c \in \pi_{11}^C$ such that

$$||f-c|| < \varepsilon \quad \text{and} \quad E_{11}^{\mathsf{R}}(f) = 1 \tag{9}$$

From (9) follows that $||\text{Im}c|| < \varepsilon$. Hence there exists $\delta > 0$ such that $||\text{Im}c(1+\delta)| < \varepsilon$. We observe now that the transformation $\phi: t \to ((1+\delta)t+1)/(t+(1+\delta))$ maps [-1, 1] bijectively onto itself and that the change of the argument x by $\phi(t)$ preserves the classes C[-1, 1], π_{11}^{R} and π_{11}^{C} and preserves norms. Hence, the functions $\tilde{f} = f \circ \phi$ and $\tilde{c} = c \circ \phi$ satisfy

$$\|\tilde{f} - \tilde{c}\| < \varepsilon$$
 and $E_{11}^{\mathsf{R}}(\tilde{f}) = 1.$ (9')

In view of the choice of δ , we also obtain

$$|\operatorname{Im} \tilde{c}(\infty)| = |\operatorname{Im} c(\phi(\infty))| = |\operatorname{Im} c(1+\delta)| < \varepsilon.$$
(10)

Define now $g(t) = \tilde{f}(t) - \operatorname{Re} \tilde{c}(\infty)$. Then

$$E_{01}^{\mathsf{R}}(g) \ge E_{11}^{\mathsf{R}}(g) = E_{11}^{\mathsf{R}}(\tilde{f}) = 1 \tag{11}$$

by (9'), and

$$\|g - (\tilde{c} - \tilde{c}(\infty))\| = \|\tilde{f} - \tilde{c} + i \operatorname{Im} \tilde{c}(\infty)\| < 2\varepsilon$$
(12)

by (9'), (10).

Since $\tilde{c} - \tilde{c}(\infty) \in \pi_{01}^{\mathbb{C}}$, we obtain from (12) that $E_{01}^{\mathbb{C}}(g) < 2\varepsilon$, which together with (11) implies $\gamma_{01} < 2\varepsilon$. It follows that $\gamma_{01} = 0$, contradicting the above-mentioned result of Trefethen and Gutknecht.

REFERENCES

- 1. C. BENNETT, K. RUDNICK, AND J. VAALER, Best uniform approximation by linear practional transformations, J. Approx. Theory 25 (1979), 204–224.
- 2. S. W. ELLACOTT, A note on a problem of Saff and Varga concerning the degree of complex rational approximation to real valued functions, *Bull. Amer. Math. Soc.* (N. S.) 6 (1982), 218–220.
- 3. G. MEINARDUS, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, Berlin/New York, 1967.
- 4. L. N. TREFETHEN AND M. H. GUTKNECHT, Real vs. complex rational Chebyshev approximation to real valued functions, *Trans. Amer. Math. Soc.* 280 (1983), 555-561.
- 5. R. S. VARGA, "Topics in Polynomial and Rational Interpolation and Approximation, "Les Presses de l'Université de Montréal, Montreal, 1982.